

35

CLEAR IJRET Vol-1, No-2 Dec-Feb 2011-2012

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP

Efficient Utilization of Time for Fast Multipliers Using

Twin Precision Technique in DSP

M.Sahithi
1
, Naseema Shaik

2
, S. Dayasagar Chowdary

1
, M. Jyothi

1
,

J.Poornima
1
 and K. Rajasekhar

1

1 M.Tech students, Department of ECE, K L University, Vijayawada, AP, India

mannesahithi@gmail.com
2 Asst Prof. Department of ECE, K L University, Vijayawada, AP, India

 aseem.dishad@gmail.com

Abstract

 We present the twin-precision technique for multipliers. The twin-precision technique can

reduce the power dissipation by adapting a multiplier to the bit width of the operands being

computed. The technique also enables an increased computational throughput, by allowing

several narrow-width operations to be computed in parallel. We describe how to apply the

twin-precision technique also to signed multiplier schemes, such as Baugh–Wooley and

modified-Booth multipliers. By using this we can reduce power and we can do the

multiplication in less amount of time.

Keywords: Twin Precision technique, Baugh Wooley algorithm, Modified Booth algorithm.

INTRODUCTION

 Multiplication is a complex arithmetic

operation, which is reflected in its relatively

high signal propagation delay, high power

dissipation, and large area requirement.

When choosing a multiplier for a digital

system, the bit width of the multiplier is

required to be at least as wide as the largest

operand of the applications that are to be

executed on that digital system. The bit

width of the multiplier is, therefore, often

much larger than the data represented inside

the operands, which leads to unnecessarily

high power dissipation and unnecessary long

delay.

 The basic multiplication principle is two

fold i.e. evaluation of partial products and

accumulation of the shifted partial products.

It is performed by the successive additions of

the columns of the shifted partial product

matrix. The „multiplier‟ is successfully

shifted and gates the appropriate bit of the

„multiplicand‟. The delayed, gated instance

of the multiplicand must all be in the same

column of the shifted partial product matrix.

They are then added to form the product bit

for the particular form. Multiplication is

therefore a multi operand operation. To

extend the multiplication to both signed and

unsigned numbers, a convenient number

system would be the representation of

numbers in two‟s complement format.

 In this paper the results from

investigations on flexible multipliers are

presented. The new twin-precision technique,

which was developed during this work,

makes a multiplier able to adapt to different

requirements. By adapting to actual

multiplication bit-width using the twin-

precision technique, it is possible to save

power, increase speed and double

computational throughput. The

investigations have also led to the conclusion

that the long used and popular modified-

Booth multiplier is inferior in all aspects to

the less complex Baugh - Wooley multiplier.

36

CLEAR IJRET Vol-1, No-2 Dec-Feb 2011-2012

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP

In this paper we present mainly the

comparisons of algorithms which are mainly

used for multiplication. Here we present the

array multiplier, Modified booth algorithm

and Baugh Wooley algorithm. In this our

main aim is to show Baugh Wooley is the

efficient technique for getting multiplication

in less amount of time. It also used to get

high throughput with less power. We

structured our code in VHDL.All these

algorithms are designed by using Twin

Precision [1] technique.

GENERAL MULTIPLICATION

 Fast multipliers are essential parts of

digital signal processing systems. The speed

of multiply operation is of great importance

in digital signal processing as well as in the

general purpose processors today, especially

since the media processing took off. In the

past multiplication was generally

implemented via a sequence of addition,

subtraction, and shift operations.

Multiplication can be considered as a series

of repeated additions. The number to be

added is the multiplicand, the number of

times that it is added is the multiplier, and

the result is the product. Each step of

addition generates a partial product. In most

computers, the operand usually contains the

same number of bits. When the operands are

interpreted as integers, the product is

generally twice the length of operands in

order to preserve the information content.

This repeated addition method that is

suggested by the arithmetic definition is slow

that it is almost always replaced by an

algorithm that makes use of positional

representation. It is possible to decompose

multipliers into two parts. The first part is

dedicated to the generation of partial

products, and the second one collects and

adds them.

 We present a twin-precision multiplier

that in normal operation mode efficiently

performs N-bit multiplications. For

applications where the demand on precision

is relaxed, the multiplier can perform N/2-bit

multiplications while expending only a

fraction of the energy of a conventional N-bit

multiplier. For applications with high

demands on throughput, the multiplier is

capable of performing two independent N/2-

bit multiplications in parallel.

 Achieving double throughput for a

multiplier is not as straightforward as for an

adder, where the carry chain can be cut at the

appropriate place to achieve narrow-width

additions. It is of course possible to use

several multipliers, where at least two have

narrow bit-width, and let them share the

same routing. But this scheme has several

drawbacks: i) The total area of the

multipliers would increase, since several

multiplier units are used. ii) The use of

several multipliers increases the fan-out of

the signals that drive the inputs of the

multipliers. Higher fan-out means longer

delays and/or higher power dissipation. iii)

There would be a need for multiplexers that

connect the active multiplier to the result

route.

 These multiplexers would be in the

critical path, increasing total delay as well as

power dissipation. Work has been done to

use 4:2-reduction stages to combine small

tree multipliers into larger multipliers. This

can be done in several stages, creating a

larger multiplier out of smaller for each extra

4:2 reduction stage. The desired bit-width of

the multiplication is then obtained by using

multiplexers. This technique requires extra

reduction stages for the larger multipliers,

which has a negative impact on the delay for

these.

 We present the twin-precision technique

that offers the same power reduction as

operand guarding and the possibility of

double-throughput multiplications. The twin-

precision technique is an efficient way of

achieving double throughput in a multiplier

with low area overhead and with practically

no delay penalty.

37

CLEAR IJRET Vol-1, No-2 Dec-Feb 2011-2012

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP

 In an unsigned binary multiplication each

bit of one of the operands, called the

multiplier, is multiplied with the second

operand, called multiplicand (Eq. 1). That

way one row of partial products is generated.

Each row of partial products is shifted

according to the position of the bit of the

multiplier, forming what is commonly called

the partial-product array. Finally, partial

products that are in the same column are

summed together, forming the final result.

An illustration of an 8-bit multiplication is

shown in Fig. 1.

pij = yixj --------------------------------- (1)

Figure 1: Illustration of an unsigned 8-bit multiplication.

IMPLEMENTATIONS AND ALGORITHMS

A. Array Multiplier

 The basic operation of generating a partial

product is that of a 1-bit multiplication using

a 2-input AND gate, where one of the input

signals is one bit of the multiplier and the

second input signal is one bit of the

multiplicand. The summation of the partial

products can be done in many different ways,

but for this investigation we are only

interested in parallel multipliers that are

based on 3:2 full adders1. For this first

implementation an array of adders will be

used because of its close resemblance to the

previously used illustration of a

multiplication.

 In the previous section we assumed that

there is a way of setting unwanted partial

products to zero. This is easily accomplished

by changing the 2-input AND gate to a 3-

input AND gate, where the extra input can be

used for a control signal. Of course, only the

AND gates of the partial products that has to

be set to zero need to be changed to a 3-input

version. During normal operation when a

full-precision multiplication is executed the

control signal is set to high, thus all partial

products are generated as normal and the

array of adders will sum them together and

create the final result. When the control

signal is set to low the unwanted partial

products will become zero. Since the

summations of the partial products are not

overlapping, there is no need to modify the

array of adders. The array of adders will

produce the result of the two multiplications

in the upper and lower part of the final

output. The block diagram of an 8-bit twin-

precision array multiplier capable of

computing two 4-bit multiplications. The

two multiplications have been colored in

white and black to visualize what part of the

adder array is used for what multiplication.

 More flexibility might be wanted, like the

possibility to compute a single low-precision

38

CLEAR IJRET Vol-1, No-2 Dec-Feb 2011-2012

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP

multiplication or two parallel low-precision

multiplications, within the same multiplier.

This can be done by changing the 2-input

AND gates for the partial product generation

of the low-precision multiplication as well.

In the array multiplier in Fig. 1.5, the AND

gates for the 4-bit MSP multiplication,

shown in black, can be changed to 3-input

AND gates to which a second control signal

can be added. Assuming the multiplier is

divided into two equal parts, this

modification makes it possible to either

compute an N-bit, a single N=2-bit or two

concurrent N=2-bit multiplications.

Figure .2: Block diagram of an unsigned 8-bit array multiplier

Figure.3: Block diagram of an unsigned 8-bit twin-precision array multiplier.

 The TP signal is used for controlling if

one full-precision multiplication should be

computed or two 4-bit multiplications should

be computed in parallel.

 The above figure.3 shows the array

multiplier implementation using Twin

precision technique. It shows the clear

difference between

B. A Baugh Wooley Implementation

Using Twin Precision

39

CLEAR IJRET Vol-1, No-2 Dec-Feb 2011-2012

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP

 In this section a twin-precision multiplier

based on the Baugh-Wooley [2] (BW)

algorithm will be presented. The BW

algorithm is a relative straightforward way of

doing signed multiplications. Fig. 4

illustrates the algorithm for an 8-bit case,

where the partial product array has been

reorganized according the scheme of

Hatamian [3] . The creation of the

reorganized partial-product array comprises

three steps:

i. The most significant partial product of

the first (N –1) rows and the last row

of partial products except the most

significant has to be negated,

ii. A constant one is added to the Nth

column,

iii. The most significant bit (MSB) of the

final result is negated.

Figure.4: Illustration of an 8-bit Baugh-Wooley multiplication.

To combine twin-precision with BW is not

as simple as for the unsigned multiplication,

where only parts of the partial products

needed to be set to zero. To be able to

compute two signed N=2 multiplications, it

is necessary to make a more sophisticated

modification of the partial-product array. Fig.

1.8 shows an illustration of an 8-bit BW

multiplication, where two 4-bit

multiplications have been depicted in white

and black.

 When comparing the illustration of Fig. 4.

with that of Fig. 5.one can see that the only

modification needed to compute the 4-bit

multiplication in the MSP of the array is an

extra sign bit '1' in column S12. For the 4-bit

multiplication in the LSP of the array, there

is a need for some more modifications.

Looking at the active partial-product array of

the 4-bit LSP multiplication (shown in

white), we see that the most significant

partial product of all rows, except the last,

needs to be negated. For the last row it is the

opposite, here all partial products, except the

most significant, are negated. Also for this

multiplication a sign bit '1' is needed, but this

time in column S4. Finally the MSB of the

result needs to be negated to get the correct

result of the two 4-bit multiplications.

40

CLEAR IJRET Vol-1, No-2 Dec-Feb 2011-2012

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP

Figure.5. Illustration of a signed 8-bit multiplication, using the Baugh-Wooley algorithm, where a 4-

bit multiplication, shown in white, is computed in parallel with a second 4-bit multiplication, shown in

black.

 To allow for the full-precision

multiplication of size N to coexist with two

multiplications of size N=2 in the same

multiplier, it is necessary to modify the

partial-product generation and the reduction

tree. For the N=2-bit multiplication in the

MSP of the array all that is needed is to add a

control signal that can be set to high, when

the N=2-bit multiplication is to be computed

and to low, when the full precision N

multiplication is to be computed. To

compute the N=2-bit multiplication in the

LSP of the array, certain partial products

need to be negated. This can easily be

accomplished by changing the 2-input AND

gate that generates the partial product to a 2-

input NAND gate followed by an XOR gate.

The second input of the XOR gate can then

be used to invert the output of the NAND

gate. When computing the N=2-bit LSP

multiplication, the control input to the XOR

gate is set to low making it work as a buffer.

When computing a full-precision N

multiplication the same signal is set to high

making the XOR work as an inverter. Finally

the MSB of the result needs to be negated

and this can again be achieved by using an

XOR gate together with an inverted version

of the control signal for the XOR gates used

in the partial-product generation. Setting

unwanted partial products to zero can be

done by 3-input AND gates as for the

unsigned case.

41

CLEAR IJRET Vol-1, No-2 Dec-Feb 2011-2012

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP

Figure.6. Block diagram of a signed 8-bit multiplication, using the Baugh-Wooley algorithm,

where a 4-bit multiplication, shown in white, is computed in parallel with a second 4-bit

multiplication, shown in black.

 Fig. 6. shows an implementation of a

twin-precision 8-bit BW multiplier. The

modifications of the reduction tree compared

to the unsigned 8-bit multiplier in Fig. 3

consist of three things; i) the half adders in

column 4 and 8 have been changed to full

adders in order to fit the extra sign bits that

are needed, ii) for the sign bit of the 4-bit

MSP multiplication there is no half adder

that can be changed in column 12, so here an

extra half adder has been added which makes

it necessary to also add half adders for the

following columns of higher precision, and

iii) finally XOR gates have been added at the

output of column 7 and 15 so that they can

be inverted.

 The simplicity of the BW implementation

makes it easy to also compute unsigned

multiplications. All that is needed is to set

the control signals accordingly, such that

none of the partial products are negated, the

XOR gates are set to not negate the final

result and all the sign bits are set to zero.

C. Modified Booth Algorithm

 Modified Booth [4] (MB) is a popular

algorithm and commonly used for

implementation of signed multipliers. MB is

a more complicated algorithm for signed

multiplication than Baugh-Wooley (BW),

but it has the advantage of only producing

half the number of partial products. In this

section a twin-precision multiplier based on

the MB algorithm will be presented.

 The original-Booth algorithm is a way of

coding the partial products generated during

a S = x * y multiplication. This is done by

42

CLEAR IJRET Vol-1, No-2 Dec-Feb 2011-2012

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP

considering two bits at a time of the x

operand and coding them into { - 2; - 1; 0; 1;

2 }. The encoded number is then multiplied

with the second operand, y, into a row of

recoded partial products. The number of

recoded partial products is fewer than for a

scheme with unrecorded partial products and

this can be translated into higher

performance.

 The drawback of the original-Booth

algorithm is that the number of generated

partial products depends on the x operand,

which makes the Booth algorithm unsuitable

for implementation in hardware. The

Modified Booth [5] algorithm by MacSorley

remedies this by looking at three bits at a

time of operand x. Then we are guaranteed

that only half the number of partial products

will be generated, compared to a

conventional partial product generation using

2-input AND gates. With a fixed number of

partial products the MB algorithm is suitable

for hardware implementation. Fig. 1.10

shows which parts of the x operand that are

encoded and used to recode the y operand

into a row of partial products.

 A MB multiplier works internally with

two's complement representation of the

partial products, in order to be able to

multiply the encoded {-2; -1g with the y

operand. To avoid having to sign extend the

rows of recoded partial products, the sign-

extension prevention scheme presented by

Fadavi- Ardekani [6] has been used. In two's

complement representation, a change of sign

includes the insertion of a '1' at the Least

Significant Bit (LSB) position. To avoid

getting an irregular partial-product array [7]

we draw on the idea of Yeh et al., [8] called

modified partial-product array. The idea is to

pre-compute the impact on the two least

significant positions of a row of recoded

partial products by the insertion of a '1'

during sign change. The pre-computation

calculates the addition of the LSB with the

potential '1', from which the sum is used as

the new LSB for the row of recoded partial

products. An potential carry from the pre-

computation is inserted at the second least

significant position.

 Implementing twin-precision together

with the MB algorithm is not as

straightforward as for the BW

implementation. It is not possible to take the

partial products from the full-precision MB

multiplication and use only the partial

products that are of interest for the low-

precision MB multiplications. The reason for

this is that all partial products are not

computed the same way and there exist

several special cases that need to be handled.

The implementation of the MB twin-

precision multiplication does not call for any

significant changes to the reduction tree of a

conventional MB multiplier. When

comparing the multiplications, we can see

that the position of the signals in the lowest

row is the only difference that has an impact

on the reduction tree. This means that there

is a need for an extra input in two of the

columns (N=2 and 3N=2) compared to the

conventional MB multiplier; this requires

two extra half adders in the reduction tree.

 The biggest difference between a

conventional MB multiplier and a twin

precision MB multiplier is the generation of

inputs to the reduction tree. To switch

between modes of operation, logic is added

to the recoder to allow for generation of the

partial products needed, for sign-extension

prevention as well as pLSBi, which are

needed for N=2-bit multiplications in the

LSP and the MSP, respectively. There is also

a need for multiplexers that, depending on

the mode of operation, select the appropriate

signal as input to the reduction tree. Further,

partial products that are not being used

during the computation of N=2- bit

multiplications have to be set to zero in order

to not corrupt the computation.

43

CLEAR IJRET Vol-1, No-2 Dec-Feb 2011-2012

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP

Figure.7.Twin array Multiplier

Figure.8. Modified Booth Multiplier Using Twin Precision

44

CLEAR IJRET Vol-1, No-2 Dec-Feb 2011-2012

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP

Figure 9. Baugh Wooley algorithm using Twin precision technique

All these are implemented using Xilinx [9] ISE Simulator.

 Baugh wooley Modified Booth Array multiplier

Efficiency High Moderate Low

Speed High High Low

Throughput High Less compared to

Baugh Wooley

Low

Adders Less in number Less less

Signed or Unsigned Both Signed Unsigned

Complexity Less More compared to

Baugh Wooley

More

Area Used Less Partially less More

Table 1.Comparisions of the algorithms used in multiplication.

III. SIMULATION RESULTS

 From the above table.1 we have seen that

Baugh Wooley is more efficient and less

complex when compared to other designs

that we are used in this paper. One of the

goals of the twin-precision technique is to

keep the performance degradation of the

multiplier‟s full-precision operation at a

minimum. A clear trend is that a BW

implementation is more power efficient than

a MB implementation. However, a MB

implementation can, in some cases, exhibit

higher maximum speed. The MB twin

45

CLEAR IJRET Vol-1, No-2 Dec-Feb 2011-2012

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP

precision implementation has the poorest

performance, both in terms of delay and

power, of the four compared implementation

choices. The twin-precision multiplier

requires slightly more area than its

conventional counterpart. However, the

twin-precision implementation based on the

BW algorithm is smaller than the commonly

used conventional MB implementation.

CONCLUSION

 From the above figures we have seen the

multiplication using Array multiplier,

Modified Booth and Baugh Wooley

algorithms. The presented twin-precision

technique allows for flexible architectural

solutions, where the variation in operand bit

width that is common in most applications

can be harnessed to decrease power

dissipation and to increase throughput of

multiplications. The modified-Booth

algorithm, which is commonly used today,

makes multiplier design complex and a

significant design effort is needed to obtain

an efficient implementation. The

implementation of Baugh Wooley algorithm

using Twin Precision Technique gives high

throughput, highly efficient, more speed

when compared to Array multiplier design

and Modified Booth algorithms. So Baugh

Wooley design using Twin Precision is less

complex and easily designed and is more

efficient.

REFERENCES

M. Själander, H. Eriksson, and P. Larsson-

Edefors, “An efficient twin precision

multiplier,” in Proc. 22nd IEEE Int.

Conf. Compute. Des., Oct. 2004, pp.30–

33.

C. R. Baugh and B. A. Wooley, “A two‟s

complement parallel array

multiplication algorithm,” IEEE Trans.

Comput., vol. 22, pp.1045–1047,

Dec.1973.

M. Hatamian, “A 70-MHz 8-bit � 8-bit

parallel pipelined Multiplier in 2.5-�m

CMOS,” IEEE J. Solid-State Circuits,

vol. 21, no. 4, pp.505–513, Aug. 1986.

A. D. Booth, “A signed binary multiplication

technique, Quarterly J. Mechan. Appl.

Math” vol.4, no.2, pp.236240, 1951.

O. L. MacSorley, “High speed arithmetic in

binary computers, Proc.Inst.RadioEng”

vol.49, no.1, pp.67–97, Jan.1961.

 J. Fadavi-Ardekani, “M�N Booth encoded

multiplier generator Using optimized

Wallace trees,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol.1, no.2,

pp.120–125, 1993.

W.-C. Yeh and C.-W. Jen, “High-Speed

Booth Encoded Parallel Multiplier

Design,” IEEE Transactions on

Computers, vol. 49, no. 7, pp. 692–701,

July 2000.

W.-C. Yeh and C.-W. Jen, “High-speed

Booth encoded.

Parallel multiplier design,” IEEE

Trans.Comput., vol.49, no. 7, spp. 692–

701, Jul. 2000.

Xilinx, Inc. Xilinx Libraries Guide, 1999.

