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Abstract 

 

 We present the twin-precision technique for multipliers. The twin-precision technique can 

reduce the power dissipation by adapting a multiplier to the bit width of the operands being 

computed. The technique also enables an increased computational throughput, by allowing 

several narrow-width operations to be computed in parallel. We describe how to apply the 

twin-precision technique also to signed multiplier schemes, such as Baugh–Wooley and 

modified-Booth multipliers. By using this we can reduce power and we can do the 

multiplication in less amount of time. 
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INTRODUCTION 

     Multiplication is a complex arithmetic 

operation, which is reflected in its relatively 

high signal propagation delay, high power 

dissipation, and large area requirement. 

When choosing a multiplier for a digital 

system, the bit width of the multiplier is 

required to be at least as wide as the largest 

operand of the applications that are to be 

executed on that digital system. The bit 

width of the multiplier is, therefore, often 

much larger than the data represented inside 

the operands, which leads to unnecessarily 

high power dissipation and unnecessary long 

delay. 

      The basic multiplication principle is two 

fold i.e. evaluation of partial products and 

accumulation of the shifted partial products. 

It is performed by the successive additions of 

the columns of the shifted partial product 

matrix. The „multiplier‟ is successfully 

shifted and gates the appropriate bit of the 

„multiplicand‟. The delayed, gated instance 

of the multiplicand must all be in the same 

column of the shifted partial product matrix. 

They are then added to form the product bit 

for the particular form. Multiplication is 

therefore a multi operand operation. To 

extend the multiplication to both signed and 

unsigned numbers, a convenient number 

system would be the representation of 

numbers in two‟s complement format. 

     In this paper the results from 

investigations on flexible multipliers are 

presented. The new twin-precision technique, 

which was developed during this work, 

makes a multiplier able to adapt to different 

requirements. By adapting to actual 

multiplication bit-width using the twin-

precision technique, it is possible to save 

power, increase speed and double 

computational throughput. The 

investigations have also led to the conclusion 

that the long used and popular modified-

Booth multiplier is inferior in all aspects to 

the less complex Baugh - Wooley multiplier. 
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In this paper we present mainly the 

comparisons of algorithms which are mainly 

used for multiplication. Here we present the 

array multiplier, Modified booth algorithm 

and Baugh Wooley algorithm. In this our 

main aim is to show Baugh Wooley is the 

efficient technique for getting multiplication 

in less amount of time. It also used to get 

high throughput with less power. We 

structured our code in VHDL.All these 

algorithms are designed by using Twin 

Precision [1] technique. 

GENERAL MULTIPLICATION 

     Fast multipliers are essential parts of 

digital signal processing systems. The speed 

of multiply operation is of great importance 

in digital signal processing as well as in the 

general purpose processors today, especially 

since the media processing took off. In the 

past multiplication was generally 

implemented via a sequence of addition, 

subtraction, and shift operations. 

Multiplication can be considered as a series 

of repeated additions. The number to be 

added is the multiplicand, the number of 

times that it is added is the multiplier, and 

the result is the product. Each step of 

addition generates a partial product. In most 

computers, the operand usually contains the 

same number of bits. When the operands are 

interpreted as integers, the product is 

generally twice the length of operands in 

order to preserve the information content. 

This repeated addition method that is 

suggested by the arithmetic definition is slow 

that it is almost always replaced by an 

algorithm that makes use of positional 

representation. It is possible to decompose 

multipliers into two parts. The first part is 

dedicated to the generation of partial 

products, and the second one collects and 

adds them. 

     We present a twin-precision multiplier 

that in normal operation mode efficiently 

performs N-bit multiplications. For 

applications where the demand on precision 

is relaxed, the multiplier can perform N/2-bit 

multiplications while expending only a 

fraction of the energy of a conventional N-bit 

multiplier. For applications with high 

demands on throughput, the multiplier is 

capable of performing two independent N/2-

bit multiplications in parallel. 

     Achieving double throughput for a 

multiplier is not as straightforward as for an 

adder, where the carry chain can be cut at the 

appropriate place to achieve narrow-width 

additions. It is of course possible to use 

several multipliers, where at least two have 

narrow bit-width, and let them share the 

same routing. But this scheme has several 

drawbacks: i) The total area of the 

multipliers would increase, since several 

multiplier units are used. ii) The use of 

several multipliers increases the fan-out of 

the signals that drive the inputs of the 

multipliers. Higher fan-out means longer 

delays and/or higher power dissipation. iii) 

There would be a need for multiplexers that 

connect the active multiplier to the result 

route.  

     These multiplexers would be in the 

critical path, increasing total delay as well as 

power dissipation. Work has been done to 

use 4:2-reduction stages to combine small 

tree multipliers into larger multipliers. This 

can be done in several stages, creating a 

larger multiplier out of smaller for each extra 

4:2 reduction stage. The desired bit-width of 

the multiplication is then obtained by using 

multiplexers. This technique requires extra 

reduction stages for the larger multipliers, 

which has a negative impact on the delay for 

these. 

     We present the twin-precision technique 

that offers the same power reduction as 

operand guarding and the possibility of 

double-throughput multiplications. The twin-

precision technique is an efficient way of 

achieving double throughput in a multiplier 

with low area overhead and with practically 

no delay penalty. 
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     In an unsigned binary multiplication each 

bit of one of the operands, called the 

multiplier, is multiplied with the second 

operand, called multiplicand (Eq. 1). That 

way one row of partial products is generated. 

Each row of partial products is shifted 

according to the position of the bit of the 

multiplier, forming what is commonly called 

the partial-product array. Finally, partial 

products that are in the same column are 

summed together, forming the final result. 

An illustration of an 8-bit multiplication is 

shown in Fig. 1. 

 

  

pij = yixj --------------------------------- (1) 

 

Figure 1: Illustration of an unsigned 8-bit multiplication. 

 

IMPLEMENTATIONS AND ALGORITHMS 

A. Array Multiplier 

     The basic operation of generating a partial 

product is that of a 1-bit multiplication using 

a 2-input AND gate, where one of the input 

signals is one bit of the multiplier and the 

second input signal is one bit of the 

multiplicand. The summation of the partial 

products can be done in many different ways, 

but for this investigation we are only 

interested in parallel multipliers that are 

based on 3:2 full adders1. For this first 

implementation an array of adders will be 

used because of its close resemblance to the 

previously used illustration of a 

multiplication. 

     In the previous section we assumed that 

there is a way of setting unwanted partial 

products to zero. This is easily accomplished 

by changing the 2-input AND gate to a 3-

input AND gate, where the extra input can be 

used for a control signal. Of course, only the 

AND gates of the partial products that has to 

be set to zero need to be changed to a 3-input 

version. During normal operation when a 

full-precision multiplication is executed the 

control signal is set to high, thus all partial 

products are generated as normal and the 

array of adders will sum them together and 

create the final result. When the control 

signal is set to low the unwanted partial 

products will become zero. Since the 

summations of the partial products are not 

overlapping, there is no need to modify the 

array of adders. The array of adders will 

produce the result of the two multiplications 

in the upper and lower part of the final 

output. The block diagram of an 8-bit twin-

precision array multiplier capable of 

computing two 4-bit multiplications. The 

two multiplications have been colored in 

white and black to visualize what part of the 

adder array is used for what multiplication. 

     More flexibility might be wanted, like the 

possibility to compute a single low-precision 
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multiplication or two parallel low-precision 

multiplications, within the same multiplier. 

This can be done by changing the 2-input 

AND gates for the partial product generation 

of the low-precision multiplication as well. 

In the array multiplier in Fig. 1.5, the AND 

gates for the 4-bit MSP multiplication, 

shown in black, can be changed to 3-input 

AND gates to which a second control signal 

can be added. Assuming the multiplier is 

divided into two equal parts, this 

modification makes it possible to either 

compute an N-bit, a single N=2-bit or two 

concurrent N=2-bit multiplications. 

 

 
 

Figure .2: Block diagram of an unsigned 8-bit array multiplier 

 

 

Figure.3: Block diagram of an unsigned 8-bit twin-precision array multiplier. 

 

     The TP signal is used for controlling if 

one full-precision multiplication should be 

computed or two 4-bit multiplications should 

be computed in parallel. 

     The above figure.3 shows the array 

multiplier implementation using Twin 

precision technique. It shows the clear 

difference between  

B. A Baugh Wooley Implementation 

Using Twin Precision 
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     In this section a twin-precision multiplier 

based on the Baugh-Wooley [2] (BW) 

algorithm will be presented. The BW 

algorithm is a relative straightforward way of 

doing signed multiplications. Fig. 4 

illustrates the algorithm for an 8-bit case, 

where the partial product array has been 

reorganized according the scheme of 

Hatamian [3] . The creation of the 

reorganized partial-product array comprises 

three steps: 

i. The most significant partial product of 

the first (N –1)  rows and the last row 

of partial products except the most 

significant has to be negated, 

ii. A constant one is added to the Nth 

column, 

iii. The most significant bit (MSB) of the 

final result is negated. 

 

 

Figure.4: Illustration of an 8-bit Baugh-Wooley multiplication. 

 

To combine twin-precision with BW is not 

as simple as for the unsigned multiplication, 

where only parts of the partial products 

needed to be set to zero. To be able to 

compute two signed N=2 multiplications, it 

is necessary to make a more sophisticated 

modification of the partial-product array. Fig. 

1.8 shows an illustration of an 8-bit BW 

multiplication, where two 4-bit 

multiplications have been depicted in white 

and black. 

     When comparing the illustration of Fig. 4. 

with that of Fig. 5.one can see that the only 

modification needed to compute the 4-bit 

multiplication in the MSP of the array is an 

extra sign bit '1' in column S12. For the 4-bit 

multiplication in the LSP of the array, there 

is a need for some more modifications. 

Looking at the active partial-product array of 

the 4-bit LSP multiplication (shown in 

white), we see that the most significant 

partial product of all rows, except the last, 

needs to be negated. For the last row it is the 

opposite, here all partial products, except the 

most significant, are negated. Also for this 

multiplication a sign bit '1' is needed, but this 

time in column S4. Finally the MSB of the 

result needs to be negated to get the correct 

result of the two 4-bit multiplications. 
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Figure.5. Illustration of a signed 8-bit multiplication, using the Baugh-Wooley algorithm, where a 4-

bit multiplication, shown in white, is computed in parallel with a second 4-bit multiplication, shown in 

black. 

 

     To allow for the full-precision 

multiplication of size N to coexist with two 

multiplications of size N=2 in the same 

multiplier, it is necessary to modify the 

partial-product generation and the reduction 

tree. For the N=2-bit multiplication in the 

MSP of the array all that is needed is to add a 

control signal that can be set to high, when 

the N=2-bit multiplication is to be computed 

and to low, when the full precision N 

multiplication is to be computed. To 

compute the N=2-bit multiplication in the 

LSP of the array, certain partial products 

need to be negated. This can easily be 

accomplished by changing the 2-input AND 

gate that generates the partial product to a 2-

input NAND gate followed by an XOR gate. 

The second input of the XOR gate can then 

be used to invert the output of the NAND 

gate. When computing the N=2-bit LSP 

multiplication, the control input to the XOR 

gate is set to low making it work as a buffer. 

When computing a full-precision N 

multiplication the same signal is set to high 

making the XOR work as an inverter. Finally 

the MSB of the result needs to be negated 

and this can again be achieved by using an 

XOR gate together with an inverted version 

of the control signal for the XOR gates used 

in the partial-product generation. Setting 

unwanted partial products to zero can be 

done by 3-input AND gates as for the 

unsigned case. 
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Figure.6. Block diagram of a signed 8-bit multiplication, using the Baugh-Wooley algorithm, 

where a 4-bit multiplication, shown in white, is computed in parallel with a second 4-bit 

multiplication, shown in black. 

     Fig. 6. shows an implementation of a 

twin-precision 8-bit BW multiplier. The 

modifications of the reduction tree compared 

to the unsigned 8-bit multiplier in Fig. 3 

consist of three things; i) the half adders in 

column 4 and 8 have been changed to full 

adders in order to fit the extra sign bits that 

are needed, ii) for the sign bit of the 4-bit 

MSP multiplication there is no half adder 

that can be changed in column 12, so here an 

extra half adder has been added which makes 

it necessary to also add half adders for the 

following columns of higher precision, and 

iii) finally XOR gates have been added at the 

output of column 7 and 15 so that they can 

be inverted. 

     The simplicity of the BW implementation 

makes it easy to also compute unsigned 

multiplications. All that is needed is to set 

the control signals accordingly, such that 

none of the partial products are negated, the 

XOR gates are set to not negate the final 

result and all the sign bits are set to zero. 

C. Modified Booth Algorithm 

     Modified Booth [4] (MB) is a popular 

algorithm and commonly used for 

implementation of signed multipliers. MB is 

a more complicated algorithm for signed 

multiplication than Baugh-Wooley (BW), 

but it has the advantage of only producing 

half the number of partial products. In this 

section a twin-precision multiplier based on 

the MB algorithm will be presented. 

     The original-Booth algorithm is a way of 

coding the partial products generated during 

a  S = x * y multiplication. This is done by 
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considering two bits at a time of the x 

operand and coding them into { - 2; - 1;  0; 1; 

2 }. The encoded number is then multiplied 

with the second operand, y, into a row of 

recoded partial products. The number of 

recoded partial products is fewer than for a 

scheme with unrecorded partial products and 

this can be translated into higher 

performance. 

     The drawback of the original-Booth 

algorithm is that the number of generated 

partial products depends on the x operand, 

which makes the Booth algorithm unsuitable 

for implementation in hardware. The 

Modified Booth [5] algorithm by MacSorley 

remedies this by looking at three bits at a 

time of operand x. Then we are guaranteed 

that only half the number of partial products 

will be generated, compared to a 

conventional partial product generation using 

2-input AND gates. With a fixed number of 

partial products the MB algorithm is suitable 

for hardware implementation. Fig. 1.10 

shows which parts of the x operand that are 

encoded and used to recode the y operand 

into a row of partial products. 

     A MB multiplier works internally with 

two's complement representation of the 

partial products, in order to be able to 

multiply the encoded {-2; -1g with the y 

operand. To avoid having to sign extend the 

rows of recoded partial products, the sign-

extension prevention scheme presented by 

Fadavi- Ardekani [6] has been used. In two's 

complement representation, a change of sign 

includes the insertion of a '1' at the Least 

Significant Bit (LSB) position. To avoid 

getting an irregular partial-product array [7] 

we draw on the idea of Yeh et al., [8] called 

modified partial-product array. The idea is to 

pre-compute the impact on the two least 

significant positions of a row of recoded 

partial products by the insertion of a '1' 

during sign change. The pre-computation 

calculates the addition of the LSB with the 

potential '1', from which the sum is used as 

the new LSB for the row of recoded partial 

products. An potential carry from the pre-

computation is inserted at the second least 

significant position. 

     Implementing twin-precision together 

with the MB algorithm is not as 

straightforward as for the BW 

implementation. It is not possible to take the 

partial products from the full-precision MB 

multiplication and use only the partial 

products that are of interest for the low-

precision MB multiplications. The reason for 

this is that all partial products are not 

computed the same way and there exist 

several special cases that need to be handled. 

The implementation of the MB twin-

precision multiplication does not call for any 

significant changes to the reduction tree of a 

conventional MB multiplier. When 

comparing the multiplications, we can see 

that the position of the signals in the lowest 

row is the only difference that has an impact 

on the reduction tree. This means that there 

is a need for an extra input in two of the 

columns (N=2 and 3N=2) compared to the 

conventional MB multiplier; this requires 

two extra half adders in the reduction tree. 

     The biggest difference between a 

conventional MB multiplier and a twin 

precision MB multiplier is the generation of 

inputs to the reduction tree. To switch 

between modes of operation, logic is added 

to the recoder to allow for generation of the 

partial products needed, for sign-extension 

prevention as well as pLSBi, which are 

needed for N=2-bit multiplications in the 

LSP and the MSP, respectively. There is also 

a need for multiplexers that, depending on 

the mode of operation, select the appropriate 

signal as input to the reduction tree. Further, 

partial products that are not being used 

during the computation of N=2- bit 

multiplications have to be set to zero in order 

to not corrupt the computation. 
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Figure.7.Twin array Multiplier 

  

 

 

 

Figure.8. Modified Booth Multiplier Using Twin Precision 
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Figure 9. Baugh Wooley algorithm using Twin precision technique 

 

 

 

All these are implemented using Xilinx [9] ISE Simulator. 

  
 Baugh wooley Modified Booth Array multiplier 

Efficiency High Moderate Low 

Speed High High Low 

Throughput High Less compared to 

Baugh Wooley 

Low 

Adders Less in number Less less 

Signed or Unsigned Both Signed Unsigned 

Complexity Less More compared to 

Baugh Wooley 

More 

Area Used Less Partially less More 

  

Table 1.Comparisions of the algorithms used in multiplication. 

III.     SIMULATION RESULTS 

     From the above table.1 we have seen that 

Baugh Wooley is more efficient and less 

complex when compared to other designs 

that we are used in this paper. One of the 

goals of the twin-precision technique is to 

keep the performance degradation of the 

multiplier‟s full-precision operation at a 

minimum. A clear trend is that a BW 

implementation is more power efficient than 

a MB implementation. However, a MB 

implementation can, in some cases, exhibit 

higher maximum speed. The MB twin 



 

 

 

 

 

 

 

45 

CLEAR IJRET                                      Vol-1, No-2                                Dec-Feb 2011-2012 

Efficient Utilization of Time for Fast Multipliers Using Twin Precision Technique in DSP 

 

precision implementation has the poorest 

performance, both in terms of delay and 

power, of the four compared implementation 

choices. The twin-precision multiplier 

requires slightly more area than its 

conventional counterpart. However, the 

twin-precision implementation based on the 

BW algorithm is smaller than the commonly 

used conventional MB implementation. 

CONCLUSION 

     From the above figures we have seen the 

multiplication using Array multiplier, 

Modified Booth and Baugh Wooley 

algorithms. The presented twin-precision 

technique allows for flexible architectural 

solutions, where the variation in operand bit 

width that is common in most applications 

can be harnessed to decrease power 

dissipation and to increase throughput of 

multiplications. The modified-Booth 

algorithm, which is commonly used today, 

makes multiplier design complex and a 

significant design effort is needed to obtain 

an efficient implementation. The 

implementation of Baugh Wooley algorithm 

using Twin Precision Technique gives high 

throughput, highly efficient, more speed 

when compared to Array multiplier design 

and Modified Booth algorithms. So Baugh 

Wooley design using Twin Precision is less 

complex and easily designed and is more 

efficient.  
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